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SUMMARY

It is suggested that problems in a reliability context
may be handled by a Bayesian non-parametric approach.
A stochastic process is defined whose sample paths may
{ be assumed to be either increasing hazard rates or decreasing
hazard rates by properly choosing the parameter functions of
; the process. The posterior distribution of the hazard rates are
l derived for both exact and censored data. Bayes estimates of
hazard rates, c.d.f.'s, densities, and means, are found under
squared error type loss functions. Some simulation is done and

estimates graphed to better understand the estimators. Finally,

estimates of the c.d.f from some data in a paper by Kaplan and

Meier are constructed.
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1. INTRODUCTION

Recently, there has been a good deal of interest in nonpara-
metric Bayesian approaches to statistical inference. In this ap-
proach a stochastic process is defined whose sample paths index a
large family of distributions. Then conditional on a realization
of the process, i.i.d. observations are taken from the indexed
distribution, and inferences are made from the posterior distribu-
tion of the process. In this manner the prior probability can be spread
over a very large number of distributions, It is also possible to
avoid explicitly specifying the functional form of the likelihood.

The most common approach has been extensively discussed by
Ferguson (1973), and consists of using a 'Dirichlet Process' prior.
That is, a continuous time parameter stochastic process whose finite
dimensional increments have a Dirichlet distribution is defined.

One can then assume that the sample paths of this process are cumu-
lative distribtion functions. Ferguson shows that the posterior
distribution of the process, given the complete observations, is also
distributed as a Dirichlet stochastic process, and uses this posterior
distribution for making his statistical inferences.

Antoniak (1974) considers mixtures of Dirichlet distributions.
Doksum (1974) addresses his attention to prior stochastic processes
that are 'tailfree', and/or 'neutral'. His posterior distributions,
however, are obtained in terms of expectations over the entire prob-
ability space. Susarla and Van Ryzin (1976) were able to obtain the
posterior mean of censored data using a Dirichlet prior. Recently,
Ferguson and Phadia (1976) were able to generalize these censored

data results to more general '"meutral to the right" processes.




This type of approach seems to have merit concerning statistical

inference in a reliability context. What is proposed, since the

concept of hazard rate plays such a key role in statistical reliability,

is to place the prior probability over the collection of hazard rates.
This is done by defining an appropriate stochastic process whose sample
paths are hazard rates. With this prior we derive the posterior dis-
tribution of the hazard rates for both right censored and exact
observations. This approach has the advantage of placing the prior
probability strictly on absolutely continuous distributions rather
than on discrete distributions as is the case with the Dirichlet
process prior. Moreover, Bayes estimators of the entire distribution
under natural loss functions are absolutely continuous. Finally,
since our prior random c.d.f.'s are not neutral to the right, the

work of Doksum (1974) and Ferguson and Phadia (1976) does not apply.

2. THE EXTENDED GAMMA PROCESS

We shall assume throughout that our distributions have posi-
tive probability only on the nonnegative half of the real line,
although one could adapt to distributions over the whole .real line.

The hazard function H(x) of a distribution is defined to be
H(x) = - In(1 - F(x))

where F(x) is the left continuous c.d.f. of the distribution as

in Loeve (1963). (It is also possible to work with right contin-

uous c.d.f.'s, but left continuous c.d.f.'s are computationally

more convenient for us.) We shall refer to F(x) =1 - E(x} as
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the survival function of the distribution. Note that from some
point on, H(x) may equal plus infinity. If, for all x, one

can express

H(x) = /r(t) dt ,
[0,x)

then r(x) is called the hazard rate of the distribution. Thus,

r(x) 1is related to the density f(x) by the relationship

rix} = _f_iﬂ
F(x)

and has the interpretation that r(x)a is approximately eaual tn the

probability of failure in the next A increment of time given
that a lifetime has survived until time x.

We denote by G(a,B) the gamma distribution with shape

parameter o 2 0, and scale parameter B > 0. For o > 0, this

distribution has for its density with respect to Lebesgue measure,

g(x|a,B) = xa_l exp(-x/B)I(O’w)(x)/F(u)Sa s

with the distribution assumed to be degenerate at 0 if o = 0

Let oa(t), t 2 0, be a nondecreasing left-continuous real-

valued function such that o(0) = 0, and let B(t), t2>20 , be a

positive right-continuous real-valued function, bounded away from i

0 and « with left hand limits existing.




Z(t), t 2 0, defined on an appropriate probability space

(2, #, p) denotes a gamma process with independent increments
corresponding to a(t). That is, Z(0) = 0, Z(t) has independent
increments and for t > s, Z(t) - Z(s) is G(a(t) - a(s), 1).

It has been shown (see Ferguson (1973) that such
a process exists and that its distribution is uniquely determined.
We assume WLOG that this process has nondecreasing left continuous
sample paths.

We now define a new stochastic process by

(2.1) r{t) = / B(s)di(s) ,
[0,t)

with the interpretation that for almost every w, Z(t,w) is a
nondecreasing left continuous function in t bounded on every
finite interval, and r(t) 1is the Lebesque Stieltjes integral,
with respect to that function, of B8(s) over the interval [0,t).

We say a process defined in this manner has an extended gamma

distribution, and we denote such a process ty
r(t) is T(a(+),B(*)) .

The finite dimensional c.d.f.'s (or densities) of r(t) appear to
be rather intractable, although the distribution of the extended

gamma process is ''mice” in many ways.

THEOREM 2.1 I£f r(t) is distributed as TI'(a(+), 8(*)), then

r(t) has independent increments and for fixed t
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(2.2) the characteristic function of 1r(t) in some

neighborhood of 0 is given by

Ve(ey () = exp [/ In(1 - is(s)e)da(s)]

[0,t)
(2.3) Er(t) = I B(s)da(s), and
(0,t)
(2.4) Var r(t) = j B2(s)da(s) .
[0,t)
PROOF : Let 0 = tgn) < tgn) <es o< tﬁ?%) be a sequence of parti-

tions whose norm goes to 0 and t£?3)+w as n-»>», Define

(2.5) T (t) = 2 et ey -z
{i>0;t£n)<t}
where if the index set is empty, we assume 7r(t) = 0. Then
rn(t) a.s. r(t)so that rn(t)—f»r(t) and wrn(t)(e)+¢r(t)(e).

2 (n)
Also, @ (6) =1 WSS ) e (n) (B(t."7)e)
I‘n(t) {j;t(n) <t}Z(tJ ) z(tj‘l) J

J

N M)y _ e (m)
= 1 (1-ie(t§n))e) i PR

{j;t§n) <t}

<

= exp [-1 (a(e$™)-ace i) m-1se {0

j
{j;tgn) <}

+ exp[- ‘[ In(1-iB(s)e)da(s)] for 6 sufficiently close
[0,t)

to 0,
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One can show (2.3) and (2.4) either by taking derivatives of the

characteristic function or by veriiying that Ern(t)k+Er(t)k, k > 0.
The independent increments follow easily by letting the increment
endpoints be contained in the partition points.

Since the original gamma process Z(t) is a pure jump process,

the extended gamma process will also be a pure jump process.

3. RANDOM HAZARD RATES

Provided a(t) 1is not identically zero, we may
assume that the sample paths of an extended gamma process r(t)
are well defined nondecreasing hazard rates corresponding to
absolutely continuous distributions. Thus the conditional distri-
bution of the observations Xl’ ey Xn given 7r(t) will be
defined by

n
(3.1)  P(Xp 2 xp, oo X2 X |T(8)) = T_exp[-f ritiat] ‘aus.
i=1 [O’Xl)

Of course (3.1) and the distribution of 7r(t) will determine
the joint distribution of Xl, o s Xn’ r(t) and will be used to
derive the marginal distribution of Xl’ e Xn and the posterior
distribution of r(t) given the observed values of Xl,...,Xn ,
Since the sample paths of the 1r(t) process are nondecreasing functicns

a.s., we are placing our prior probability entirely within the
class of distributions with nondecreasing hazard rates. Later, we
will show how the prior can be placed over distributions with

nonincreasing hazard rates.

In assigning a prior probability mcasurc by this mecthod, onc
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needs to input the functions «(t) and Bg(t). One approach con-
sists of defining nondecreasing mean and variance functions p(t)

and o02(t). It would seem reasonable to assign as u(t) the

best "guess'" of the hazard rate and use o2(t) to measure the

amount of uncertainty or variation in the hazard rate at the point

t. Thus a band u(t) * 20(t) should cover most of the "feeling" for
the location of the hazard rate. Assuming u(t), o?(t) and o(t)

are all differentiable, one can use (2.3) and (2.4) to set

./ B(s)a'(s)ds, and
[0,t)

i}

u(t)

"

/ B2(s)a'(s)ds .
[0,t)

o%(t)

Solving for a(t) and PB(t) yields

(3.2) p(r) = 48, dut) | gy
(3.3) da(t) _ du(t)® , do(t)
dt dt dt .

which then determines the prior distribution. The form of the
posterior distribution gives information on the effect of the
prior and may help in choosing a(+) and B(*)

The marginal distribution of an observation X can be found

from (3.1) with the use of a limiting argument. The proof of

Theorem 3.1 is given in section 7.




THEOREM 3.1 If the prior over hazard rates is T (a(*),B(*))

then the marginal survival function of an observation X 1is given

by

(3.4) F(t) = P(X=2t) = exp[i / %n(1+6(s)(t-s))du(s)].
0,t

The marginal survival function of the observations Xl,...,Xn

can be found by methods similar to Theorem 3.1 and is given in the

tollowing corollary.

COROLLARY 3.1 If the prior over the hazard rates is T (a(+), B(*)),

then the joint marginal survival function of n observations

Xl, s Xn is
n
(3.5) F(ty,...,t)) =P(X;2ty,...,X >t ) =expl- [ In(1+8(s) I (s-ti)*)da(sn
0,) i=1
where a' = sup{a,0}

Thus the marginal survival function of Y = min(Xl,...,Xn)

is of the same form as the survival function of just X1 providing
B(s) 1is replaced by npg(s).

The key problem in any Bayesian setting is to derive the
posterior distribution. Moreover it is important to handle cen-
sored observations since reliability data are often of this type.
If an extended gamma prior is used, the posterior distribution for

right censored observations is also an extended gamma process. The

proof is given in section 7.

THEOREM 3.2 If the prior over the hazard rates is T (a(*), B(*))

then the posterior over the hazard rates, given m censored

observations of the form X, 2 X3, X, 2 X5, «.vy X 2 X 1S

F(a(s), B(+)) where




a(t) = e(c)

1+8(t) & (x.-t)"
j=] %

The effect of censored observations is thus to lower the sample

paths to the left of the censoring points while leaving the values
to the right unchanged which appears inherently reasonable.
] We next address ourselves to the question of the posterior
% distribution of 1r(t) given exact observations. The answer to
that question is given in the following theorem, i.e. that the
posterior can be expressed as a continuous mixture of extended gamma
distributions. However, the dimension of the mixing measure in-

creases with sample size. The proof is given in section 7.

THEOREM 3.3 If the prior over the hazard rates is T (a(*), B(*))

then the posterior over the hazard rates, given m observations of

the form X X = x_1is a mixture of extended gamma

1=X1,..., n m

processes. The distribution of the mixture is given by

3.7) P(r(t)sB|X1=x1,...,Xm=xm) =
m a m A m m (Z)
¢ + + I
[, ¥ g SEGn B e gt L S8 o (zj,w)l i
m m m X ]( )
g d * U E Z.
s i=1 e jo1 [a guisg  UhgemadT 2

[0,%,) [0,%;)

Here F(B;Q) denotes the probability assigned to B EBR by a
‘ stochastic process which is distributed as Q, g( ) is defined

as in (3.6), and the iterated integrations are done first with
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respect to 2y then Zy s through L 0f course
m
X 7 =
j=m+1 I(Zj,”)( ) =0

The complexity of this distribution makes it difficult to
see how an observation X1==x1 affects the posterior. Close
examination reveals that a failure at time xq indicates an increase
in the hazard rate prior to X) - However, this increase in the
hazard rate diminishes as one looks further into the past. This
is evidenced by the weight function §(t) = B(t)[1 +B(t)(x1 —t)+]-1
in the mixing integral. The above effect is tempered by the rate
at which a(t) increases so that §(t) and a(t) together deter-

mine where and how the increase in risk (the unit jump in the a

function) occurs.

4. DECREASING HAZARD RATES

With very little modification the work done for increasing
hazard rates can be applied toward decreasing hazard rates. 1In
particular, let o(*), B(*), and Z(*) be defined as in section
2 with one exception. We assume that a(+) and B8(+) have
finite values at plus infinity designated by a(») and B(=) .
We require that a(») 2 a(t), t 20 . Z(®) 1is of course
G(a(®), 1), and Z(x) - %ig Z(t) 1is independent of the rest of
the process. We then define a decreasing extended gamma process

(OT (a(+), B(*))) by

(4.1) r(t) =f B (s)dZ(s) + B(®)[Z(»)-1lim Z(t)]=[ B (s)dZ(s) .
[t,=) e [t,~]

R e T
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With this definition, r(t) need not go to 0 as t goes to <,
Integrals w.r.t. a(*) are defined in an analogous manner. We
take 1r(t) to have non-increasing left-continuous paths. As

expected,

E r(t) {

B (s)da(s),

(4.2)

Var r(t) = [ B2%(s)da(s), etc.

(t, =]

If one then uses a DI (a(t), B(t)) prior over the failure
rates, essentially all the distributional results of Section 3
carry over providing we replace "extended gamma' with
"decreasing extended gamma'", define é(-) differently, and make
our range of integration be [t,»] rather than [0,t) . The

following theorems will be stated without proofs.

THEOREM 4.1 If the prior over the hazard rates is DI (a(*), B(*)),

then the joint marginal survival function of n observations

X . Xn is given by

1’

n
(4.3) 'F(tl,... st) =P(Xp2tg,...,X 2t ) = exp[-[Ofm}n(hs(s)iilmin(ti,s))du(s)].

THEOREM 4. 2 If the prior over the hazard rates is DI (a(*), B(*)),

then the posterior of the hazard rates given the n censored

observations X1 2 Xps oeeey Xn 2 X is DI (a(*), é(-)) where

(4.4) By = BB

1+8(t) I min(x,,t)
i=1 .
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THEOREM 4.3 If the prior over the hazard rates is DI (a(+), B(*)),

the posterior of the hazard rates given X, = Xy

saen X = oy can
' m

be expressed as a continuous mixture of decreasing extended gamma

distributions, i.e. as

(4.5) P(r(t)eB|X1=x1,...,X =x_)

/' /' m _ m S m
o m B8(z.)F(B;Dr (a+ £ I(z °°),B)) ) d[a+ z
[x, ]3"1 : i=1 94" i=1 L j=i+l
s[ﬁrm] 1?

. (ZJ ] (zi)

/ m’é( ) lr]rld : I
i I B(z. a+
(x o) Dol i=l 1 sl jeie] (zj'“]](zi)

The hazard rate estimation discussion in Section 5 will apply

to the decreasing case provided one makes the obvious changes in

the various expressions. Similarly, the computational results in

Section 6 can easily be modified to handle the decreasing hazard

rate situation.

5. BAYES ESTIMATORS

(a) Estimation of hazard rates.

A natural loss function to be used when estimating a hazard

rate is the generalization of squared error loss given in Ferguson

(1973). Thus our loss function will be

(5.1) L(r,T) = [f )(r(t) - T(t))2dW(t)

where W is an artitrary finite measure on [0,»)

[ [ B*(s)da(s)dW(t) < = .
[0,=) [0,t)

such that




(5.2) T(t) =

In finding T(t) which minimizes the expected loss, we may

interchange the order of integration and thus minimize
E(r(t) - T(t))?

for a fixed t. The Bayes estimator is given by the posterior mean
of r(t).

If we ignore censored observations, we may use the form of
E r(t) in (2.3) and the fact that the mean of a mixture of distri-
butions is the mixture of the means (assuming existence) to express

the Bayes estimator of r(t) as

i [ % 2(zg.) % dla(z.)+ g I (2,)]

& & . z.

{o'xn) [o'xl) [0,t) i=08(zl 4=0 alz; j=i+l(z 'i)
i

n , n n
. 4 nBe(z;) T dla(z)+ I I (z,)]
[0.x,) [0,x1)i=1 i=1 J=1+1(zj,0)
where the iterated integrals are integrated with respect to 2z,,
Z2q» Zy, etc., respectively.
Note that the denominator is of the exact same form as the
numerator, though the integral is of a smaller dimension.
Obviously T(t) is a nondecreasing function of t as expected.
Including censored observations would only modify the 8 function.
While some approaches of nonparametric hazard rate estimation

require the use of an arbitrary window function w(*) of integral

one, this approach is free of any such function.




It would appear that the utility of this estimate is severely
limited since it involves a multi-dimensional integral. We shall
show in the next section, however, that T(t) is expressible in
a manner that involves only one-dimensional integrals.

If the prime consideration is predictive in nature, the

solution is different. Suppose

Fx ~ = -
(5.3) Fr(t) = P(X,;, 2t | X, Xps eees Xpo= X))
denotes the conditional survival function of a future observation
given n current observations. Then

(5.4)  Fa(t) = E PR og 2t 18]y Ko s. o Xp=xy)

r(t)lxl,...,xn

where the expectation is with respect to the posterior distribution
. i & 2 '
of T given Xl Xpseees Xn xn. Since the Xi s are

conditionally i.i.d., this is equivalent to

E exp [- [ r(s) ds]
(5.5) r(t)lxl,-.-.xn [0,t)

which is the posterior mean at t of the random survival function
F(t) defined from r(t) by TF(t) = exp[-[[0 t)r(s)ds]. Thus F*(t)
can be thought of as the Bayes estimate of the survival function for the

squared error loss function

(5.6) L(E,F) = [ (F(t) - F(t))2d W(t)
[

0,=)

where W(t) is a finite measure over [0,x). Including censored




AR s ee—— e—

-15-

observations only changes the form of the g function.

To find a closed form expression for F*(t), let

] B a n n
(5.7) Ctj' - Il B(zi) n d[a(zi)+ E I (zi)l
0,x) [0,x,)i=1 i=k j=i+l (zj.ﬂ)

denote the norming constant in the posterior of r(t) . Since the
posterior is a mixture of extended gamma distribution, we may use

Theorem 3.1 to obtain

(5.8) () =
1 I e e f - - ~ + n - -
= = I B(zi)exp[-j 1n(1+3(z0)(t—zo) )d(a(z0)+ ) | (zo)lﬂ d[a(zi)+ B | (zi)]

C[O:xn) [0:x1)i=1 [0,00) i=1l (Zigoo) i=1 J=1+I(ZJ »)

The integrand can be evaluated as

(5.9) §(zi)eXP[-f ln(1+B(zo)(t-zo)+)da(zo)-.2 In(1+8(z;) (t-2,) ]

1 [0,%) i=1

n=as

i

a . no Bz
= exp[-] In(1+B(z) (t-zp) )da(z)] T —= = .
[0,%) i=1 1+8(z;) (t-z,)

Noting that our first factor is free of Z5 s and relabeling

B(z,)
148 (2) (t-2z5)"

(5.10) Br(z;) =

we obtain
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(5.11) F*(t) = exp[-J 1n(1+§(z0)(t-zo)*)da(zo)]
[0,*)
n n 1 n
Pi u a g I B*(zy) Mdla(z))+z I (z;)]
< [o'xn) [ 'xl)igl i=1 j=i+l(zjl°°) L
8, n n
i n B(zi) n d[u(zi) +I I (z.)]
lo,xn) [0.x1)1=1 i=1 j-i+1(zj,°)
Similarly, Corollary 3.1 can be used to express the joint survival
function of k future observations Xn+1,..., Xn+k conditional
on the observed data. Thus
(5.12) .Fttn+1""’tn+k) . p(xml 201 Xna 2 thek ‘Xl =x1,...,Xn==xn)
is of the same form as (5.11) with (t-zi)+
n+k &
replaced by ot -z3). One of the consequences of
j=n+1 J

this is that the minimum of k future observations has the conditional
survival function given in (5.11) with E replaced by ké

Noting in (5.11) that B* is a nonincreasing function of t
which is equal to B when x=0 guarantees that F*(t) is a
bonafide survival function. The first factor of TF*(t) in (5.11)
would be the survival function of a future observation were the
observations censored at XqseeesXy rather than observed. Thus
the second factor contains the information gained by observing

""deaths'" rather than "losses'" (see Kaplan and Meier (1958) for

elaboration on this terminology).
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Note that F*(t) is differentiable. By using the product
rule for derivatives, interchanging derivatives and integrals, and
interchanging the order of integration, it can be shown that the

density corresponding to F*(t) 1is given by

(5.13) £*(t) = exp[-[é )1n(1+§(t-z0)*)da(z0)

n n n
M B*(z;) T dla(z,) + %

R { ;
[0,x,)  [0,x)[0,x)i=0 i=0 j=i+l (Zj.'”)(z

)]

i

T n n
[ .1 B(z)) Tdla(z)* 1

o ] =
[0,x,) [0,x))i=1 i=1 ey SO

Moreover, if we define the random density function by

(5.14) £(t) = r(t)exp[-[é t)r(s)ds] - £ Fo)

then by interchanging differentiation and integration over the

posterior distribution we have

(5.15) £4(t) = -t E(F(1)) = EC- F(e)) = B(£(1))

so that f*(t) is the Bayes estimate of the density with the usual

type loss function,

(5.16) LED = 1 ) - R Zawce) .
[0,t)
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This suggests an approach to density estimation which gives
smooth continuous estimates and avoids the problem of defining
window functions as in Rosenblatt (1971).

Finally , we may obtain the failure rate r*(t) corresponding
to F"(t) as
(5.17) rr(r) = £ .

FT ()
n

n n
ot i I B*(z,) I [da(z;)+ I 1 )
[O{XH) [Ofxl)[oft) I BN D (e L B Ty (2:0)

n

1[da(zi)+j=§+ll[zj,m)(zi)]

[6ix ) [0ux)) ixd

n=as

n
*
B (z;) 1
1=

However, this is the same expression as in (5.2) with the exception
that the B's are replaced by B*'s. 1In other words, the effect of
using the loss function over the c.d.f.'s (5.6) when estimating a
distribution (be it c.d.f., density, or hazard rate) at a point t
rather than the loss function over the hazard rate (5.1) is merely

to act as though one has an additional censored observation at the
point t .

If one is interested in estimating the mean of the distribution

in question, then

!
~—
o

e
—
1
~

(5.18) u = [j F(t)dt = r(s)ds] dt

0,x) [0,)

’
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Ev is a well defined random variable providing

[ exp[- [ 1n<1+B(s)(x-sjda(s)]dt< C
[0,=) [0,t)

o i L i ol L e A S - b s Al o e

Taking expectations with respect to the posterior distribution, the

mean of the estimated survival function F¥* ,

P -

(5.19) pt = [ Fh(e)de = [ E(F(e))dt = E(u}
3 [O,W) T
k is the Bayes estimate of u under the usual loss function

(5.20) LG, = -2 .
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6. COMPUTATION AND SIMULATION.

The presence of the multi-dimensional integral which occurs in
our estimates would appear to make computation extremely difficult.

The following theorem enables us to work with integrals of only

one dimension. The integrands are powers of the g function and the

integration is with respect to the o measure.

THEOREM 6.1 Assuming that a(+) and RB(*) are defined as in

Section 2, then

o | B, n n
L S .H B(z.) I dla(z,)+ £ I (z.)
[orxn) [01X1)1=1 & i=1 j=i+l (zjrm)ZI :
k(e)[ N B(e)®
: {i’eizl}f & B(t) *da(t) ]

where 0 < X, <X eee <X, < o, the sum is over all vectors i

e = (el, e, en) of non-negative integers such that

j n
Le; < Jo 3 &1, seup il E B, ™ a; wnd
i=1 jul *

(6.2) : 3oy 3
k(e) = I J-1 = 0 [(j-1)- % e.]!/[j-C e.]!
i {j;e.22} [(j-l)-Ze.]F’e._1 {j,e.22} 1e" .2

J T J J

where nF% denotes the number of permutations of n things taken

r at a time.
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PROOF: Since the inside integral can be expressed as a sum of n
integrals, the next as a sum of n-1 integrals, etc., it is clear
that (6.1) can be expressed as a sum of n! integrals. Moreover,
since we assume the xi's are ordered in decreasing fashion, i
must be the case that

(6.3) {0 é(zi)dl (z;) = é(zj) for I. ¢ x. 2% .8 * 1,

)xi) (Zj ’00) J J %

This will then combine with é(zj)k

to give §(zj)k+1 for some
integer k. Close scrutiny will reveal however that the exponent
k of @(zj)k can never exceed j. Moreover, each of the n!

integrals will be of the form

.
g5 LY B(t) tda(t)
(6.4) {1,ei21}[0,xi)
n
where )3 e,=n, the e, being non-negative integers. Thus to
i=1

establish Theorem 7.1, we need only argue that k(e) correctly
counts the number of terms of the form given in 15.4).
Consider & vector ¢ = (el, o en) of the form specified

in the statement of the theorem. Fix j and assume that e. = 1.

J
Then one unit of the exponent of @(zj)ej must come from the jth

integration, and the other ej-l units must come from previous

integrations. Since there will be (j-1) - previous inte-

4
i=1
grations unaccounted for, there are

1
(j-1) -

.
| o
=

(0}

(©.5)
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ways of choosing the required ej - 1 integrations. Moreover, the
first chosen integration can increase the exponent in ej - 1 ways
(by being routed to any of the other integrations which eventually
contribute to ej), the second chosen integration can increase the
exponent in ej - 2 ways, etc. Thus we need to multiply (6.5)

by (ej - 1)! to count how many ways we can obtain the necessary
exponent. Using the multiplication principle then to count the

total number of terms (6.4) for a given vector e gives us k(e).

Example Consider the very specialized case where o(*) jumps at

0 and is then flat. That is

0

a(0)

o(x) = o, x > 0.

In this case, 1r(t) will be a constant function whose value will
be a G(a, B(0)) random variable. Thus the only value of Rg(t)
that matters is B(0) = B. Since the parameter in an exponential
distribution is just its constant failure rate, this is equivalent
to putting a G(a,B) prior over the parameter 6 of an
exponential density.

Then if we have complete observations at Xpseees Xy and censored
observations at x

o o we can specify our posterior distribution

n+l’ n+m?

of r(t) from Theorems 3.2 and 3.3. Since the posterior of

an exponential distribution with a gamma prior is again a gamma,
the distribution of r(ty), t; > 0 specified by the mixture in
Theorem 3.3 must also be a gamma distribution.

In this event, the Bayes estimate of r(t), t > 0, 1is a

Bz o et s e
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constant (free of t) and may be expressed in terms of Theorem 6.1.
Let #e denote the number of non-zero components of e. Then

from Theorem 6.1, the numerator of T(t) equals

8(0)™! 5 k(e) o "8

z
€
n+l :

=B(0)n+1 r ot z k(e) .
i=1  {e;fe=i}

However, it can be shown that T k(e) is the coeffi-
y {e;#e=1}
cients of 2Z' in Z(Z+1) (Z+2)...(Z+n) (the modulus of Sterling

numbers of the first kind). Thus the numerator of 7r(t) equals

n+m
148 £ Xx.
i=1 1t

(____g____) n+la(u+1)...(a+n) >

By similar treatment, the denominator of T(t) equals

n+m

(___Ji____) na(a+1)...(a+n-1).
1+8 § Xi

Thus (L) = (——ﬁ-‘}r) (a*+n) = _Jn%%'ll— o s
W
B 1 1

1+8 L X4
This agrees with the posterior mean for uncensored data given in
Mann, Schafer, and Singpurwalla (1974) (see page 414). As one

would expect, as n-»e

*(t)~ [total no. of failures]/[total time on test].
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In order to observe the performance of our Bayes estimators,
samples from Weibull and exponential distributions were taken and
the corresponding Bayes estimators computed. In all cases the
sample size was 1l and the prior parameter functions o(t) = t, and
B(t) = 2 were used. Thus the expected value of the prior hazard
rate would be / B(s)do(s) = 2t. This is the hazard rate of
a Weibull distriégégén with mean .8862. All observations were
complete (not censored). It is true that if one decreases g(*)
and increases o(+*) in such a way that the mean of the prior

f B(s)da(s) is unchanged, the variance of the prior f Bz(s)da(s)
Jgii)be decreased. This has the effect of specifying a égég)precise
prior distribution and hence the prior will have more influence
in posterior estimates.

Bayes estimates are computed under both loss functions i.e.

squared error loss on hazard rates and c.d.f.'s. The hazard rate

corresponding to the Bayes estimate of the c.d.f. is graphed along

with the estimated hazard rate on the hazard rate graphs for the

- purpose of “tomparfson. Similarly, the c.d.f. corresponding to the

Bayes estimate of the hazard rate is graphed on the c.d.f. graphs.
Thus on figures 1-6, the posterior Bayes estimate of the hazard rate
is denoted by a solid line, while the hazard rate which corresponds
to the posterior Bayes estimate of the c.d.f. is denoted by the line
made up of alternate dashes and plusses. Since the key is the same
for all graphs, it is stated explicitly only in Figure 1. A similar

interpretation holds for figures 7-12 concerning the c.d.f.'s. Thus
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the distributions corresponding to the solid (plus-dash) lines in
figures 1-6 are the same as the distributions corresponding to the
alternating plus-dash (solid) lines in figures 7-12 respectively.
Figures 1, 3, and 5 depict the Bayes estimates of the hazard rates
when the random samples come from Weibull distributions whose failure
rates are respectively t, 2t, and 3t. Note that the estimates reflect
the populations from which the samples come by generally having

progressively steeper slopes. (Note that the scales change between

graphs so that visual slopes are deceptive.) Figures 2, 4, 6, depict the
: Bayes estimates of the hazard rates when the samples come from
: exponential distributions. 1In each case the mean of the exponential
is made to be the same as the previous Weibull distribution.
The purpose of this is to see if our estimated hazard rates
i ¢ will reflect the difference between Weibull and exponential distri-
1 butions. Note that in each case, the estimated hazard rates are
flatter for the exponential distributions than for the Weibull

distributions. Of course since exponential distributions are on

B i
R
4 [ S

‘! fie bdunddry” (dbur Prior puts all the probability on nondecreasing
hazard rates), our estimates of the hazard rate will necessarily

be increasing to some degree. Figures 7-12 give the estimates in

Wi

terms of c.d.f.'s rather than hazard rates. They are of course

based on the same samples used in Figures 1-6. Finally, Figure 13

given in the Kaplan and Meier (1958) paper. The prior was

l and 14 depict estimates of the hazard rate and c.d.f. for the data
' arbitrarily taken to be a(t) = t, B(t) = 4 and the starred lines




-26-

indicate cencored values. Note that a slight peaking occurs in
estimates of the hazard rate at complete observations, although
this peaking is scarcely detectable in the c.d.f.'s. In comparing
these graphs with the estimates of the c.d.£f£ given in the papers
by Susarla and Van Ryzin and Ferguson and Phadia, it appears that
our estimate is closer to the Kaplan-Meier product limit estimate
than theirs. We feel that our continuous estimates are more
appealing than their discontinuous estimates.

In conclusion, it appears that our estimates have the property
of being smooth and continuous and yet are very responsive to the

data.

7. PROOFS OF THEOREMS

In this section we take our stochastic processes to be defined
on an arbitrary probability space (2, F, P). We use RR  to denote
the set of all nonnegative functions on the nonnegative real line
R and BR to denote the smallest o-algebra generated by sets of
the form {x(+)e R} : x(tl)e Iireees x(tk)e Ik} where [ ,..., I
are intervals in R. A stochastic process r is a measurable
function which maps Q into R®. This induces a probability measure
on (RR, BR) called the distribution of the process r. Since,
with probability one, the sample paths r(t,w) of our stochastic
process are failure rates, we can define a probability measure P
on the product space (RR x R, By X B) by extending P(B x C) =

[Fw(C) dP(w) to the usual product o-algebra of BR and the Borel
A

-

sets UB. Here A = r '(B) and QD(C) is the probability assigned




i
|
l
I
l
J
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i
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to C Dby the distribution corresponding to r(+,w). Then a probability
measure on (R, B) 1is determined by P(C) = l;(RR x C) =

é Fw(C) dP(w) V C € B. The posterior distribution of the process

for a single observation is a function ¢(«, <) : BR x R — [0, 1}

Borel measurable in the second argument when the first argument is

fixed such that for each fixed xeR, ¢(*,x) is a probability measure

on (R , BR) and f ®(B, x) dﬁ(x) = §(B x C) for all B EBR and C ¢ B.
C

The extension for several observations is straightforward.
For convenience in writing we adopt the following notation:

(1) glx; a,8) = x"exp(-xB)I g ) )/T(0a’; glxia) = gixsa,l)

(i1) da; = a(e{™)-a(e®)) , i =1, ..., k(n)
(441) 8; = g(es™ , 1 =1, ..., kin)

k(n) k (n)
{(iv) I = % and I = 1

i=1 i=1

Biusi>Yo reees
SE.<T wita

g oX ot B

- k(n)
(v) B (8,B,1,¥) = {(ul,...,uk(n))sR T Biui>y1'T z
i1

z Biui > yk}. Often Bn(P’B'I'X) is abbreviated Bn(g,B).
Tk-1%%i<Tx

(vi) F(B;Q) = Probability assigned to B ¢ BR by a stochastic

process with distribution Q.

LEMMA 7.1

Let oa(*) be a nonnegative nondecreasing left continuous

function on [0, =) with a(0) = 0. For a sequence of partitions

- & P d
0 to ‘t1< see X tk(n)< whose norm goes to zero and whose




upper end point goes to infinity, define an(O) =0 and

k(n)
an(t) = 3z a(ti)I(t_

t t 0,
I e o () £ (0,2)

(£} ¥ Blegh 39
] kin) ' (Ey ¢

If we define B and rn(t,m) as in (7.6) and (2.5) respectively,

A= r'l(B), and A = r;l(B) , then

(7.1) [ 1, (@) dP(w) — [ 1,(w) dP@)
Q “n Q

i.e. F(B; I‘(an.B)) — F(B; I'(a,B)) and

(7.2) lim f T g(u,;ba;)du, = F(B;T(a,B)).
n+» B_(u,B)
n ~
PROOF: For almost all w, rn(r,w)—+r(1,w) uniformly on [0, t],
0 < t< » since rn(T, w) and r(T, w) are almost surely non-
decreasing left continuous bounded functions on T ¢ [0, t]. Thus

w)2=S8- 1,) and (7.1) follows by LDCT. Note that
n

(7.3) [ I, w) dP(w) = F(B ; T'(a ,B)) = [ 1 g(u, ;Aa,) du, .
i 7 R F T A b

Thus the l.h.s. of (7.2) exists and is equal to F(B ; I'(a,B)).

PROOF OF THEOREM 3.1l: Define rn(t) as in (2.5). As noted before,
Z(t,») is nondecreasing and left continuous for almost all w.
Hence r(t), tv € [0,t] is bounded almost surely and rn(T)—» r(t)

for each 1 € [0,t]. Thus / r (1) dt — [ r(t) dt (by LDCT)
[0,t) [0,t)

for almost all w € Q .
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Now, P(X 2 t) = [ P(X2t|r(+,w))dP(w)
Q
= [ expl- [ r(t) drlaP (w)
Q

[0,t)

= lim [ exp[- [ r_(t)dt]ldP(w) by LDCT
n>o = Q [o,t) "

= lin fﬂexp[-z(t-ti)+8i{Z(ti)-Z(ti_1)}]dP(w)

i +
= lim [ exp[-Z(t-ti) B;u; 1T g(u;;da;)du,

n->® Rk(n)
(7.4) = lim 01+ (e-t) %8 70%
n-—+o
(7.5) = exp [ [ 1n(l+B(s) (t-s))da(s)].
(0,t)

PROOF OF THEOREM 3.2: First consider the case m = 1. Define

B ¢ BR by

(7.6) B = {r(-)er": r(Tl)>yl,r(rz)—r(rl)>y2.....r(rk)-r(tk_l)>yk}

where k 1is an arbitrary positive integer and 7T, <+ee¢< T

iL k*

yl,..., Y, are arbitrary nonnegative real numbers. It can be shown
that the distribution of the process r(t,w) is uniquely deter-
mined by the probabilities given to sets of the form A = r '(B).
Thus it suffices to show that the posterior probability of sets of
the form A = r_l(B) equals that assigned by an extended gamma

process with parameter functions a(+) and R(+).

Defining r_(t) as in (2.5) and A_ = r;l(B), then

a.s a.S.
rn(t)———4r(t) and IAn »1,. Thus
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P(r(t)eB | X2x) = P(r(t)eB,X 2x)/P(X 2 x)

This proves the theorem for m = 1. Using a parenthesized subscript

to emphasize

we have ﬁ‘j)(t)/[l+§(j)(t)(xj+1-t)+] = é(j+l)(t)' The theorem

follows by induction.

PROOF OF THEOREM 3.3: First consider the case m = 1. It suffices

[ expl- [ r(t)dtldP(w)/f exp[- [ r(t)dt]dP(w)
A [0,x) Q [0,x)

lim [ expl- [ r (t)dt]I, @)dP(w)/lim fexpl[- [ x (t)dt]dP (w)
n*> 0 [0,x) n n+>e (0,x)

-Aa
Limf exp(-28, (x~t;) *u, 1Mg(u,,8a;)du, /1im M1+, ()] by(7.4)

"B (4,8)

: +
iiﬁ / I g(ujiba,, 1+8, (x-t;) )du,
B (4,8)
lim T g(v,;ba;)dv, where B.,u, = B, v,
n-o A
Bn(zr 8)

F(B;T (a,)) by (7.2) of Lemma 7.1.

explicitly the dependence of £ on the sample size,

to consider sets of the form B where B is defined by

(7.6) and show that

(1.7 [f )¢(B,x) f(x) dx = P(r(t)eB, X 2 x)
x,°°
where
(7.8) £(x) = -3 F(x) = -4 [ expl-
- 7 i — pl- | r(s)ds)ap(w)

is the marginal density of X and

Q [0,x)




(7.9) ¢(B,x) = [ B(s)F(BiT(o4I  , /B))da(s)/ [ E(s)aa(s)
[olx) & [O,X)

is the conditional distribution of the process. To show (7.7) we

define ¢,(B,x) and fn(x) below by (7.11) and (7.12) respectively
and prove the following series of claims:
Claim 1: (7.10) [ ¢ (B,x)f (x)dx = j exp[-{ 1 (s)ds]I, (w)dP(w)

[x, °°) [0, x) n

where r  is defined by (2.5) and e rgl(B).

Claim 2: The r.h.s. of (7.10) converges to P(r(t)eB, X2x) as n-»>« .

Claim 3: The l.h.s. of (7.10) converges to [ ¢(B,x)f(x)dx as
[x,)
n-+>e, ’

We define

) (7.11) ¢ (B, x)-——j exp[- | r (s)ds]1, (0)dP(0)/z jexp[- / r_(s)ds]dp(w)
[o, x) o e ' [o, x)

and

d
€7.12) £ (x) = - — [ expl- r (s) ds] dP(w) -
: n dx Q [g,x) n

Claim 1 is a direct consequence of the above definitions.
S S.
Claim 2 follows since rn(s)é—i* r(s), I, (w)———+ I, (w) and by
n

LDCT the r.h.s. of (7.10) converges to [ expl- [ f(s)ds]IA(w)dP(w) =
9} [0,x

P(r(t)eB, X 2x). To prove claim 3 we show below that (i) fn(x) +>f(x) ,
‘ (ii) ¢n(B,x)fn(x)+¢(B,x)f(x), observe from (7.13) and (7.15) that

< ¢n(B,x)f (x) < f (x) and note from the definitions (7.8) and

-

(7.12) that [ f (x) dx> [ f(x)dx. Thus claim 3 follows by a
[x,°)" [x,°)

generalization of LDCT (see theorem in Royden [1968], pg. 89).
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(1) To show fn(x)+f(x), we use (7.4) to write

]

d 2 +
fn(x) -E;IH(1+Bi(x ti) ) ]
£ —Aai-l k(n) —Aaj
E[Aai(l+Bi(x-ti) ) BiI[o,xft )JH{1+B (x-t ) ) ]
le

-Ao .
+ 3j ~
[H(1+Bj(x—tj) ) 1Z Bi I

T e L

rexpl- [ In(1+8(t) (x-t))da(t)] [ B(t)da(t)
[0,°°) lorx)

d +
- — expl[- In(1+B(t) (x-t) )da(t)]
o [o{w>

(7.13)

f(x) by (7.8) and Theorem 3.1.

(ii) To show ¢n(B,x) fn(x)+ ¢@B ,x)f(x), consider

(7.14) ¢ (B,%)f (x) = - £ [ expl- [ r (s)ds] I, (w)dP(w).

Q [0,x) n

The derivative of the lntegrand in (7.14) is -r, (x)exp[- [ r (s)as]
[0,x)"
which is nonpositive and bounded below by the integrable function

-rn( k(n)’w). Thus

on (Brx) £ (%) = f r (x)expl[- / r (s)dslI, (w)dP(w)
[ 'X) n

= { {ZB o, I[o xft yexp (- ZB u, (x-t ) ]Hg(u iday) du,

B (u B)
k({81) o % " .
2 J_l [0' ) J)B {B,B)Bjuj e-’@[- Biul (x_tl) ]ng (uirA(Xi) dul




k(n) Aa.

+
= I 3 I (t.)f {u Jexp[-u. (148, (x-t.) ] /T (ba.) }du,
J [0, X) J B (u B) ] ] ] ] ]
Aoi=1
T {u, © expl- u, (146 (x-t;) )]/I‘(Aa ) Yau,
izg
+ani k(n)
(7.15) =M, (x-t) ") “1{ Z s I[O’x)(t ) A oy /i g,(vj Aaj+l)dv Jg (v, iha) dv, }
j= B (VIB)
where Biui = éivi' The term in the brackets converges to
exp [~ f In(1l + B(s)(x-s)+)da(s)] and the expression in the braces
(0,» b
can be written as f {z B, F(B P(a I o) B I s) }da(s) .

Since oa(s) and B(s) are boundedfor s e [0,x] and the integrand
converges to f(s) F(B;T(a + I(s °°),'B\)) by Lemma 7.1, application
’

of LDCT yields

(7.16) ¢> (B,x)f (x)»exp[- [ 1n(1+B(s) (x-s) )da(s)]f B(s)F(B; l‘(a+I m’é))dx(s)
[0/, x) [0,x) =

Thus ¢n(B,x)fn(x)+¢(B,x)f(x) since the limit in (7.16) equals

¢ (A,x) f(x) by Theorem 3.1, (7.8) and (7.9). This concludes the
proof for m = 1. For m = 2, a similar proof can be given. The
posterior distribution after the first observation is used as the
prior for the second. Thus ¢n(B,x) and fn(x) are similarly

defined except that r(t,w) is distributed as a mixture of extend-

ed gamma processes. The detailed computations are more cumbersome.




o

=T

One can use a generalization of an unsymmetric Fubini theorem given
by Cameron and Martin (1941) to interchange the order of certain
integrals that are encountered. Using LDCT and the result proved
for m=1, one arrives at the result for m = 2. The proof for

arbitrary m follows by mathematical induction.
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